

Adesh University Journal of Medical Sciences & Research

Article in Press

Review Article

Lower back pain in women across life stages: Insights from adolescence to menopause

Rupali Milind Salvi¹, Shubhada Kale²

Department of Community Health Nursing, Bharati Vidyapeeth College of Nursing, Department of Mental Health Nursing, Themi Grant Institute of Nursing Education, Pune, Maharashtra, India.

*Corresponding author:

Rupali Milind Salvi, Department of Community Health Nursing, Bharati Vidyapeeth College of Nursing, Pune, Maharashtra, India.

rumisa.salvi@gmail.com

Received: 28 February 2025 Accepted: 19 March 2025 EPub Ahead of Print: 13 May 2025 Published:

DOI

10.25259/AUJMSR_7_2025

Quick Response Code:

ABSTRACT

Low back pain (LBP) is a leading cause of disability worldwide, affecting individuals across all age groups and imposing a substantial burden on healthcare systems and quality of life. Despite extensive research, effective diagnostic and management strategies remain challenging due to LBP's multifactorial nature. Studies have identified a range of risk factors, including musculoskeletal degeneration, hormonal changes, lifestyle habits, and psychosocial stressors, which contribute to its high prevalence, particularly in older populations. Advances in imaging techniques and biomechanical assessments have significantly improved diagnostic accuracy. Nonpharmacological approaches, such as physical therapy and ergonomic interventions, remain the cornerstone of LBP management, while pharmacological treatments and interventional methods offer symptomatic relief but carry potential side effects. Emerging therapies, including regenerative medicine, artificial intelligence in diagnostics, and telemedicine, show promise in reshaping LBP care by improving accessibility and personalization. This review discusses the prevalence, risk factors, diagnostic tools, and treatment modalities for LBP, emphasizing the importance of integrating traditional and innovative approaches. Future research should focus on the longterm efficacy, accessibility, and gender-specific considerations of these therapies to optimize outcomes for individuals with LBP.

Keywords: Digital health, Low back pain, Prevalence, Regenerative medicine, Risk factors

INTRODUCTION

Low back pain (LBP) is one of the most common musculoskeletal complaints globally, contributing significantly to disability,^[1] healthcare costs,^[2] and reduced quality of life.^[3] Women experience a disproportionate burden due to unique anatomical, hormonal, and biomechanical factors, which influence pain perception and response to treatment.^[4]

The impact of LBP varies across a woman's life stages [Figure 1]. During adolescence, growth spurts and lifestyle choices play a key role, while in menopause, degenerative changes become more dominant. Understanding how these factors interact over time helps in developing effective interventions that address both acute and chronic manifestations of LBP.[5]

Overview of LBP and its gender-specific prevalence

LBP refers to discomfort or pain in the lumbar spine, sometimes radiating to the lower extremities. It can be classified as acute (<6 weeks), subacute (6-12 weeks), or chronic (>12 weeks), [6] with chronic cases significantly impacting mobility and well-being.^[7]

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2025 Published by Scientific Scholar on behalf of Adesh University Journal of Medical Sciences & Research

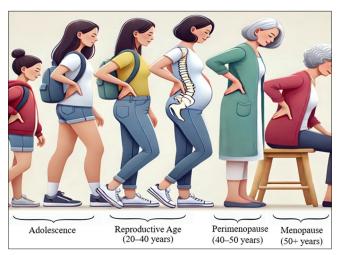


Figure 1: Stages of life in women - progression of lower back pain (LBP) from adolescence to menopause. It illustrates the progression of LBP across key life stages in women, including adolescence, reproductive age, perimenopause, and menopause. It highlights the interplay of age-specific anatomical, hormonal, and lifestyle changes contributing to the development and exacerbation of LBP.

In women, LBP is influenced not only by injury or degeneration but also by gynecological factors^[8] such as dysmenorrhea, [9] endometriosis, [10] pelvic inflammatory disease,[11] and pregnancy.[12] Structural differences in pelvic alignment,[13] lumbar curvature,[14] and muscle distribution [15] further increase susceptibility compared to men. [16,17] Lifestyle factors such as prolonged sitting, poor posture, and obesity^[18] exacerbate LBP, while menopause-related estrogen decline weakens bone density,[19] making LBP more severe.[20]

LBP prevalence varies across life stages, [21] affecting 50-80% of women.[22] Adolescents experience LBP due to poor posture^[23] and school-related factors^[24], while pregnancyrelated LBP affects up to 50% of pregnant women due to spinal curvature degenerative changes. [25,26] Psychosocial factors, including stress, anxiety, and caregiving burdens, further contribute to chronic LBP and delayed healthcare access.[27]

Importance of a life-course perspective in understanding **LBP**

LBP in women evolves across different life stages, making a life-course perspective essential for identifying risk factors and tailoring interventions. Adolescents benefit from education on posture and physical activity, reproductiveage women need targeted care for pregnancy-related LBP, and postmenopausal women require strategies to manage degenerative changes and osteoporosis.^[28]

This perspective highlights the cumulative impact of risk factors, as untreated LBP in youth can lead to chronic issues later. It also emphasizes gender-specific influences, such as hormonal fluctuations, often overlooked in generalized treatments. [29] A multidisciplinary approach, integrating physical therapy, lifestyle modifications, medical treatments, and public health strategies, is crucial for effective management across all life stages.[30]

LBP ACROSS LIFE STAGES

A life-course perspective is essential in understanding LBP, as symptoms often begin in adolescence and evolve over time. Identifying risk factors early can aid in prevention and reduce long-term impact.[31]

Adolescence: Risk factors, lifestyle influences, and prevention

Adolescence is a pivotal stage for musculoskeletal development, during which rapid skeletal growth can outpace muscle and ligament adaptation, making the spine more vulnerable to stress.[32] Postural issues often emerge due to prolonged sitting, excessive screen time, and sedentary habits, leading to muscle imbalances and spinal misalignment.

Environmental factors, including academic pressures, prolonged sitting in classrooms, and carrying heavy backpacks, contribute to spinal strain. While physical activity is crucial for musculoskeletal health, improper training techniques and a lack of conditioning can predispose adolescents to back pain. Without timely intervention, these risk factors may lead to chronic LBP in adulthood. [33]

Prevention strategies should focus on posture education, ergonomic awareness, and structured physical activity that strengthens core muscles and improves flexibility.^[34] Schools and community programs play a vital role in promoting proper backpack use,[35] movement breaks, and a balanced mix of stretching, strength training, and aerobic exercises. Addressing these factors early can significantly reduce the long-term burden of LBP.[36]

Reproductive age: Hormonal influences, pregnancyassociated pain, and occupational contributors

The reproductive years bring hormonal, physical, and lifestyle changes that significantly impact spinal health.[37] Estrogen and progesterone, key reproductive hormones, influence musculoskeletal function by affecting ligament stability. Progesterone-induced ligamentous laxity can contribute to joint instability, particularly in the lumbar spine, increasing susceptibility to LBP.[38] Women with pre-existing musculoskeletal conditions may experience worsening symptoms due to hormonal fluctuations, emphasizing the need for targeted interventions.[39]

Pregnancy is a major contributor to LBP, as weight gain, a shifting center of gravity, and postural changes place strain on the spine. The hormone relaxin further increases ligament laxity, heightening the risk of instability and discomfort. [40] Many women experience pregnancy-associated low back pain (PABL) or sciatica due to pressure on spinal nerves. Without proper management, PABL may persist postpartum, leading to chronic back pain. Education, physical therapy, and ergonomic adaptations are essential for mitigating these effects.[41]

Occupational and lifestyle factors also play a crucial role in LBP during the reproductive years. Many women balance demanding work, childcare, and household responsibilities, leading to prolonged standing, lifting, or poor posture. Sedentary jobs and high-stress levels contribute to muscle tension and chronic pain.[42] In addition, limited physical activity and poor sleep hygiene further exacerbate LBP risk. Addressing these challenges through ergonomic modifications, stress management, and regular exercise is essential for long-term spinal health.[43]

Menopause: Hormonal decline, osteoporosis, and management strategies

Menopause marks a critical phase in musculoskeletal health, where hormonal decline accelerates degenerative changes that contribute to LBP.[44] The sharp reduction in estrogen impacts bone density, muscle mass, and spinal integrity, increasing vulnerability to osteoporosis and degenerative disc disease.[45] Estrogen plays a key role in maintaining bone strength, and its decline heightens the risk of vertebral fractures and spinal deformities, [46] making LBP more prevalent and persistent during this stage.

Osteoporosis is a major concern, as weakened vertebrae increase susceptibility to fractures and spinal degeneration. Degenerative disc disease, spinal stenosis, and facet joint arthritis become more common, leading to chronic pain and reduced mobility. These conditions, combined with agerelated declines in muscle strength, create additional strain on the lower back.[47]

Managing LBP in menopausal women requires a proactive approach focused on maintaining bone health, muscle strength, and overall spinal function. Preventive measures, such as weight-bearing exercises, adequate calcium and vitamin D intake, and pharmacological interventions, are crucial in reducing osteoporosis risk. Strengthening core muscles, improving flexibility, and incorporating postural awareness through physical therapy can help mitigate spinal degeneration. In addition, ergonomic adjustments, stress management, and maintaining an active lifestyle play essential roles in reducing LBP and preserving mobility during this stage of life.[48]

CONTRIBUTING FACTORS OF LBP

LBP in women arises from a complex interplay of biomechanical and psychosocial influences that evolve across different life stages. Factors such as postural habits, hormonal fluctuations, degenerative changes, and lifestyle choices contribute to pain severity and persistence [Table 1]. These factors not only contribute to the onset and severity of pain but also shape its perception and persistence.[49]

Biomechanical: Physical activity, body mechanics, and obesity

Physical activity plays a crucial role in spinal health, with its benefits extending from adolescence to menopause. Regular exercise supports muscle strength and flexibility, essential for maintaining proper spinal alignment and preventing injury. [50] However, sedentary behavior, poor posture, slouching and prolonged sitting,[51] and improper body mechanics contribute to LBP.

Obesity further exacerbates LBP by placing excess strain on the lumbar spine. This is particularly concerning during menopause when hormonal shifts and metabolic changes lead to weight gain, worsening spinal stress, and pain.^[52] Addressing obesity through weight management, strengthening exercises, and ergonomic awareness is key to reducing LBP severity in women.^[53]

Psychosocial: Stress, anxiety, and depression on pain perception

Psychological and emotional factors significantly influence pain perception in LBP.[54] Chronic stress, anxiety, and depression heighten pain sensitivity, aggravate muscle tension, and reduce pain tolerance. Hormonal fluctuations during menopause can further intensify these effects, contributing to distress and disability. Integrating stress management, counseling, and social support into LBP care enhances both physical and emotional resilience, improving overall outcomes.^[55]

DIAGNOSIS AND MANAGEMENT

The clinical approach to diagnosing and managing LBP in women must consider the unique factors influencing spinal health across different life stages. While the fundamental principles of diagnosis remain consistent, a life-course perspective is essential to tailor treatment strategies effectively.^[56]

Diagnostic tools and stage-specific risk assessment

Accurate diagnosis of LBP relies on a combination of clinical evaluation and imaging techniques. X-rays, magnetic resonance images, and computed tomography scans play a key role in identifying musculoskeletal conditions such as scoliosis and disc herniations in adolescent and reproductive-age women^[57] [Table 2]. In postmenopausal women, these tools are crucial for detecting degenerative changes, osteoporotic fractures, and spinal stenosis, which contribute to chronic LBP.^[58]

Since LBP manifests differently throughout life, clinicians must consider stage-specific risk factors. Adolescents may require assessments focusing on posture, growth patterns, and activity-related strain. In reproductive-age women, hormonal influences and pregnancy-related spinal stress should be factored in.^[59] For postmenopausal women, osteoporosis, osteoarthritis, and degenerative disc disease become primary concerns. A tailored diagnostic approach ensures that interventions are appropriately targeted to each life stage.^[60]

Treatment options: Non-pharmacological, pharmacological, and surgical interventions

Managing LBP effectively requires a multimodal approach that integrates non-pharmacological, pharmacological,

and surgical options based on the severity of pain and life-stage-specific factors. $^{[61]}$

Non-pharmacological interventions

Physical therapy is a cornerstone of LBP management across all life stages. In adolescents, it addresses postural alignment and muscle imbalances. For reproductive-age women, physical therapy strengthens core muscles and improves spinal mobility, [62] especially in those experiencing pregnancy-related LBP. In postmenopausal women, exercises focus on maintaining muscle strength, balance, and flexibility to mitigate osteoporosis-related complications.

Yoga is another effective intervention that improves flexibility, strength, and mental well-being. Adolescents benefit from posture correction and stress reduction, while reproductive-age women use yoga for pregnancy-related spinal health and postpartum recovery. In postmenopausal women, yoga enhances balance and mobility, reducing the risk of falls and fractures. [63]

Table 1: Comparison of LBP risk factors across life stages.

Life stage	Hormonal factors	Postural issues	Degenerative changes	Lifestyle factors	Psychosocial factors	Common conditions
Adolescence	Growth spurts	Poor posture	Rare	Sedentary lifestyle, sports injuries	Academic stress	Scoliosis, muscle strain
Reproductive Age	Pregnancy, hormonal changes	Weight distribution changes	Rare	Obesity, physical strain	Work-life balance stress	Pregnancy-associated back pain
Menopause	Estrogen decline	Postural changes due to aging	Osteoporosis, osteoarthritis	Sedentary lifestyle, weight gain	Emotional instability	Chronic LBP, spinal stenosis

Table 2: Comparison of diagnostic tools for LBP across life stages.

Diagnostic tool	Adolescence	Reproductive age	Menopause	Advantages	Limitations	Clinical utility		
X-ray	Identifies scoliosis	Limited use	Detects osteoporotic fractures	Affordable, widely available	Limited soft tissue visualization	Screening for structural abnormalities		
MRI	Detects disc herniation	Soft tissue evaluation	Shows degenerative changes	Excellent detail of soft tissues	Expensive, time-consuming	Comprehensive soft tissue analysis		
CT-Scan	Rarely needed	Limited use	Detects spinal stenosis	High resolution of bone structures	High radiation exposure	Detailed bone evaluation		
DEXA (Bone Scan)	Not applicable	Not commonly used	Assesses bone density	Accurate osteoporosis assessment	Limited to bone health	Evaluating osteoporosis risk		
Ultrasound	Not commonly used	Evaluates soft tissues	Limited relevance	Non-invasive, portable	Limited depth of imaging	Focused tissue evaluation		
Clinical examination	Posture, growth patterns	Pregnancy-related pain	Chronic pain evaluation	Low-cost, initial assessment tool	Subjective, limited precision	Baseline and preliminary diagnosis		
LBP: Low back p	LBP: Low back pain, MRI: Magnetic resonance imaging, CT: Computed tomography, DEXA: Dual-energy X-ray absorptiometry							

Ergonomics also plays a crucial role in LBP management. Teaching women proper body mechanics while sitting, standing, and lifting can prevent or alleviate pain. Adolescents should develop good posture habits early, while ergonomic modifications in the workplace and home benefit reproductive-age and menopausal women by reducing spinal strain and enhancing daily functioning [Table 3].

Pharmacological management

Medications are often necessary when conservative treatments do not provide sufficient relief. Non-steroidal anti-inflammatory drugs are commonly used to manage inflammation and pain across all age groups [Table 4], but their prolonged use in postmenopausal women must be monitored due to potential gastrointestinal and renal risks.^[64]

In menopausal women, hormone therapy (HT) may offer relief by addressing estrogen-related musculoskeletal pain. [65] However, HT should be used selectively, considering associated risks such as cardiovascular events and breast cancer. [66]

Surgical interventions

Surgery is typically reserved for severe cases where conservative treatments have failed. Adolescents rarely require surgical intervention, except in cases of severe

Intervention	Adolescence benefits	Reproductive Age benefits	Menopause benefits	Key techniques	Evidence base	Recommendations
Physical Therapy	Corrects posture	Core strengthening	Muscle strengthening	Stretching, strengthening exercises	Strong	Tailored to stage-specific needs
Yoga	Improves flexibility	Spine health during pregnancy	Balance, flexibility	Asanas like Cat-Cow, Downward Dog	Moderate	Integrate with physical therapy
Ergonomics	Prevents early onset of LBP	Prevents chronic LBP	Reduces workplace strain	Proper posture, workstation setup	Limited evidence	Incorporate into daily activities
Weight Management	Reduces strain on spine	Supports pregnancy-related weight gain	Prevents degenerative changes	Diet plans, exercise routines	Strong	Personalized plans
Stress Management	Reduces muscle tension	Improves work-life balance	Mitigates emotional strain	Mindfulness, CBT	Moderate	Complement with other therapies
Lifestyle Modification	Encourages active lifestyle	Reduces sedentary behavior	Prevents age-related decline	Regular physical activity, a healthy diet	Moderate	Long-term adherence required

Medication type	Adolescence use	Reproductive age use	Menopause use	Mechanism of action	Side effects	Clinical guidelines
NSAIDs	Occasional	Commonly used	Limited use due to GI risks	Reduces inflammation, relieves pain	GI upset, kidney damage	Short-term, lowest effective dose
Acetaminophen	Rarely used	Alternative to NSAIDs	Safer for GI issues	Analgesic effect	Hepatotoxicity	Monitor liver function
Muscle Relaxants	For acute pain	Limited use	Rarely prescribed	Relieves muscle spasms	Drowsiness, dependency risk	Short-term use
Hormone Therapy	Not applicable	Rarely needed	Alleviates musculoskeletal pain	Balances estrogen levels	Breast cancer risk, cardiovascular events	Case-by-case basis
Topical Analgesics	Effective for mild cases	Effective for mild cases	Limited utility	Localized pain relief	Skin irritation	As-needed use
Opioids	Rarely prescribed	Last resort	Last resort	Central nervous system pain relief	Dependency, sedation risk	Only for severe, chronic cases

scoliosis.^[67] Reproductive-age women with conditions such as herniated discs or spinal instability may benefit from minimally invasive procedures like microdiscectomy. In postmenopausal women, surgical options such as spinal fusion or decompression may be considered for advanced degenerative conditions. However, surgical intervention should be a last resort, following a thorough risk-benefit assessment. [68]

By adopting a life-stage-specific approach to diagnosis and management, healthcare providers can optimize LBP outcomes in women, improving their quality of life and longterm spinal health.

PREVENTION AND EMERGING APPROACHES

Preventing LBP is crucial for improving quality of life, particularly in women who experience hormonal, biomechanical, and psychosocial changes at different life stages. A proactive approach incorporating education, lifestyle modifications, and early interventions significantly reduce LBP risk and prevent chronicity. [69]

Education, exercise, and lifestyle modifications

Raising awareness about LBP is essential at all life stages. Adolescents should be educated on posture, physical activity, and ergonomic habits to prevent early musculoskeletal issues. Reproductive-age women need strategies for managing pregnancy-related back pain, while postmenopausal women should focus on osteoporosis prevention and bone health.^[70]

Regular exercise, including strengthening and stretching, is key to LBP prevention. Adolescents benefit from sports and physical activity,[71] while reproductive-age women should incorporate core and pelvic floor exercises to manage pregnancy-related changes. Postmenopausal women should engage in weight-bearing exercises to maintain bone density and prevent degenerative conditions.^[72]

Proper posture and ergonomic adjustments further reduce LBP risk.^[73] Women across all life stages should adopt correct sitting, standing, and lifting techniques. Workplace modifications, including ergonomic workstations and movement breaks, are particularly beneficial for reproductive-age and menopausal women.^[74] Maintaining a healthy weight, balanced diet, and stress management also play a role in LBP prevention.[75]

Innovations in pain management and future research directions

Emerging therapies offer promising advancements in LBP treatment.^[76] Regenerative medicine, including stem cell therapy and biologics, is being explored for tissue repair and degenerative disease management. Safer pharmacological options, such as non-addictive pain medications, aim to reduce opioid dependence.[77]

Digital health tools and telemedicine are revolutionizing LBP care, providing remote access to healthcare and personalized management through mobile apps that track pain and activity levels. These innovations enhance treatment adherence and outcomes, especially for women in underserved areas.^[78]

research should focus on individualized Future LBP management strategies, incorporating genetic, environmental, and psychosocial factors. Long-term studies on emerging therapies [Table 5], as well as the impact of

Table 5: Emerging therapies for LBP.							
Therapy type	Mechanism	Application	Current evidence	Limitations	Potential outcomes	Research needs	
Biologic Therapies	Tissue repair	Degenerative disc diseases	Promising experimental studies	High cost, limited availability	Regeneration of damaged tissues	Long-term safety data	
Stem cell therapy	Tissue regeneration	Disc and joint repair	Pilot studies	Ethical concerns, cost	Reduced pain, improved mobility	Standardized protocols	
Digital health tools	Symptom tracking	Chronic pain management	Growing interest	Access, adherence challenges	Better patient engagement	More clinical trials	
Non-addictive analgesics	Pain relief	Chronic and acute pain	Early phase studies	Limited availability	Safe, effective pain management	Extensive pharmacological research	
AI-based diagnostics	Improved accuracy	Risk prediction and treatment	Moderate	Data privacy concerns	Precision medicine approach	Broader implementation studies	
Telemedicine	Remote consultations	Accessible care	Widely accepted	Internet access issues	Enhanced healthcare access	Policy integration	

diet, sleep, and mental health on LBP, will contribute to a more holistic, evidence-based approach tailored to women's needs.[79]

CONCLUSION

LBP in women is a complex, multifactorial condition influenced by hormonal, biomechanical, and psychosocial factors across different life stages. Effective management requires a life-course approach, integrating nonpharmacological strategies such as physical therapy, yoga, and ergonomics alongside pharmacological and surgical options when necessary. Prevention through education, lifestyle modifications, and physical activity is key to reducing long-term risks. Clinicians should prioritize individualized, patient-centered care, incorporating both traditional and emerging treatments such as biologics and digital health tools. Future research must further explore gender-specific factors and psychosocial influences to enhance pain management. A holistic, proactive approach can significantly improve outcomes and quality of life for women experiencing LBP.

Ethical approval: Institutional Review Board approval is not

Declaration of patient consent: Patient's consent is not required as there are no patients in this study.

Financial support and sponsorship: Nil.

Conflicts of interest: There are no conflicts of interest.

Use of artificial intelligence (AI)-assisted technology for manuscript preparation: The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing or editing of the manuscript and no images were manipulated using AI.

REFERENCES

- Wu A, March L, Zheng X, Huang J, Wang X, Zhao J, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann Transl Med 2020;8:299.
- Chen S, Chen M, Wu X, Lin S, Tao C, Cao H, et al. Global, regional and national burden of low back pain 1990-2019: A systematic analysis of the Global Burden of Disease study 2019. J Orthop Translat 2022;32:49-58.
- Agnus Tom A, Rajkumar E, John R, Joshua George A. Determinants of quality of life in individuals with chronic low back pain: A systematic review. Health Psychol Behav Med 2022;10:124-44.
- Haworth L, Topalidou A, Sawlani A. Female-specific factors in chronic neck and back pain: A scoping review of clinical practice guidelines and clinical guidance documents. Authorea Preprints; 2024. Available from: https://www.authorea.com/ users/835222/articles/1227578-female-specific-factors-inchronic-neck-and-back-pain-a-scoping-review-of-clinicalpractice-guidelines-and-clinical-guidance-documents

- [Last accessed on 2025 Feb 21].
- Aboushaala K, Chee AV, Adnan D, Toro SJ, Singh H, Savoia A, Samartzis D. Gut microbiome dysbiosis is associated with lumbar degenerative spondylolisthesis in symptomatic patients. JOR spine 2024;7:e70005.
- Qaseem A, Wilt TJ, McLean RM, Forciea MA, Clinical Guidelines Committee of the American College of Physicians, Denberg TD, et al. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the American College of Physicians. Ann Intern Med 2017;166:514-30.
- Morris P, Ali K, Merritt M, Pelletier J, Macedo LG. A systematic review of the role of inflammatory biomarkers in acute, subacute and chronic non-specific low back pain. BMC Musculoskelet Disord 2020;21:142.
- Bilkish US, Hossain DM, Rob CF, Kang XS, Mustofa MG, Bodrudduza CA. Causes of low back pain (LBP) in women without pregnancy, in relation to different age groups during the reproductive period, are primarily treated as musculoskeletal disorders: A retrospective study. MOJ Orthop Rheumatol 2024;3:72-82.
- Yacubovich Y, Cohen N, Tene L, Kalichman L. The prevalence of primary dysmenorrhea among students and its association with musculoskeletal and myofascial pain. J Bodyw Mov Ther 2019;23:785-91.
- 10. Lara-Ramos A, Álvarez-Salvago F, Fernández-Lao C, Galiano-Castillo N, Ocón-Hernández O, Mazheika M, et al. Widespread pain hypersensitivity and lumbopelvic impairments in women diagnosed with endometriosis. Pain Med 2021;22:1970-81.
- 11. Juganavar A, Joshi KS. Chronic pelvic pain: A comprehensive review. Cureus 2022;14:e30691.
- 12. Aragão FF. Pregnancy-related lumbosacral pain. BrJP 2019;2:176-81.
- 13. Shah AA, Lemans JV, Zavatsky J, Agarwal A, Kruyt MC, Matsumoto K, et al. Spinal balance/alignment - clinical relevance and biomechanics. J Biomech Eng 2019;7:10.1115/1.4043650.
- 14. Fatemi R, Javid M, Najafabadi EM. Effects of William training on lumbosacral muscles function, lumbar curve and pain. J Back Musculoskelet Rehabil 2015;28:591-7.
- 15. Urits I, Burshtein A, Sharma M, Testa L, Gold PA, Orhurhu V, et al. Low back pain, a comprehensive review: Pathophysiology, diagnosis, and treatment. Curr Pain Headache Rep 2019;23:23.
- 16. Coenen P, Smith A, Paananen M, O'Sullivan P, Beales D, Straker L. Trajectories of low back pain from adolescence to young adulthood. Arthritis Care Res (Hoboken) 2017;69:403-12.
- 17. World Health Organization. Low back pain; 2023 Jun 19. Available from: https://www.who.int/news-room/fact-sheets/detail/lowback-pain#:~:text=most%20people%20experience%20lbp%20 at%20some%20point%20in%20their%20lives,are%20more%20 common%20with%20ageing [Last accessed on 2025 Feb 08].
- Swathi S, Senthil P, Neelam S. Nonspecific low back pain in sedentary workers: A narrative review. Biomedicin. 2022;5:863-9.
- 19. Williams ME. The art and science of aging well: A physician's guide to a healthy body, mind, and spirit. Chapel Hill, NC: UNC Press Books; 2016. p. 51-69, 101-30.
- 20. Wang YX. Menopause as a potential cause for higher prevalence of low back pain in women than in age-matched men. J Orthop Translat 2017;8:1-4.

- 21. Meucci RD, Fassa AG, Faria NM. Prevalence of chronic low back pain: Systematic review. Rev Saude Publica 2015;49:1.
- 22. Grabovac I, Dorner TE. Association between low back pain and various everyday performances: Activities of daily living, ability to work and sexual function. Wien Klin Wochenschr 2019;131:541-9.
- O'Sullivan P, Smith A, Beales D, Straker L. Understanding adolescent low back pain from a multidimensional perspective: Implications for management. J Orthop Sports Phys Ther 2017;47:741-51.
- O'Sullivan K, O'Keeffe M, Forster BB, Qamar SR, van der Westhuizen A, O'Sullivan PB. Managing low back pain in active adolescents. Best Pract Res Clin Rheumatol 2019;33:102-21.
- Baradaran Mahdavi S, Riahi R, Vahdatpour B, Kelishadi R. Association between sedentary behavior and low back pain; A systematic review and meta-analysis. Health Promot Perspect 2021;11:393-410.
- Agarwal S, Agarwal M. ClinicO-scOPe"(clinic on some common orthopedic pregnancy related problems explored)-a must know in orthostetrics. SF J Orthop 2020;1:1001-5.
- Kahere M, Ginindza T. The prevalence and psychosocial risk factors of chronic low back pain in KwaZulu-Natal. Afr J Prim Health Care Fam Med 2022;14:e1-8.
- 28. Junge T, Wedderkopp N, Boyle E, Kjaer P. The natural course of low back pain from childhood to young adulthood a systematic review. Chiropr Man Therap 2019;27:10.
- 29. Schwerla F, Rother K, Rother D, Ruetz M, Resch KL. Osteopathic manipulative therapy in women with postpartum low back pain and disability: A pragmatic randomized controlled trial. J Am Osteopath Assoc 2015;115:416-25.
- Daneau C, Abboud J, Marchand AA, Houle M, Pasquier M, Ruchat SM, et al. Mechanisms underlying lumbopelvic pain during pregnancy: A proposed model. Front Pain Res (Lausanne) 2021;2:773988.
- 31. Wáng YX, Wáng JQ, Káplár Z. Increased low back pain prevalence in females than in males after menopause age: Evidences based on synthetic literature review. Quant Imaging Med Surg 2016;6:199-206.
- Sedrez JA, da Rosa MI, Noll M, Medeiros FS, Candotti CT. Risk factors associated with structural postural changes in the spinal column of children and adolescents. Rev Paul Pediatr 2015;33:72-81.
- Heuch I, Heuch I, Hagen K, Zwart JA. Physical activity level at work and risk of chronic low back pain: A follow-up in the Nord-Trøndelag Health Study. PLoS One 2017;12:e0175086.
- 34. Hanna F, Daas RN, El-Shareif TJ, Al-Marridi HH, Al-Rojoub ZM, Adegboye OA. The relationship between sedentary behavior, back pain, and psychosocial correlates among university employees. Front Public Health 2019;7:80.
- 35. Murray A, Hall AM, Williams GC, McDonough SM, Ntoumanis N, Taylor IM, et al. Effect of a self-determination theory-based communication skills training program on physiotherapists' psychological support for their patients with chronic low back pain: A randomized controlled trial. Arch Phys Med Rehabil 2015;96:809-16.
- 36. Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J Orthop Res

- 2016;34:1843-55.
- 37. Giuliani E, As-Sanie S, Marsh EE. Epidemiology and management of uterine fibroids. Int J Gynaecol Obstet 2020;149:3-9.
- 38. Watt FE. Musculoskeletal pain and menopause. Post Reprod Health 2018;24:34-43.
- Kodete CS, Thuraka B, Pasupuleti V, Malisetty S. Hormonal influences on skeletal muscle function in women across life stages: A systematic review. Muscles 2024;3:271-86.
- Sencan S, Ozcan-Eksi EE, Cuce I, Guzel S, Erdem B. Pregnancyrelated low back pain in women in Turkey: Prevalence and risk factors. Ann Phys Rehabil Med 2018;61:33-7.
- 41. Casagrande D, Gugala Z, Clark SM, Lindsey RW. Low back pain and pelvic girdle pain in pregnancy. J Am Acad Orthop Surg 2015;23:539-49.
- 42. Stewart Williams J, Ng N, Peltzer K, Yawson A, Biritwum R, Maximova T, *et al.* Risk factors and disability associated with low back pain in older adults in low- and middle-income countries. Results from the WHO Study on global ageing and adult health (SAGE). PLoS One 2015;10:e0127880.
- 43. Morino S, Ishihara M, Umezaki F, Hatanaka H, Iijima H, Yamashita M, *et al.* Low back pain and causative movements in pregnancy: A prospective cohort study. BMC Musculoskelet Disord 2017;18:416.
- Kozinoga M, Majchrzycki M, Piotrowska S. Low back pain in women before and after menopause. Prz Menopauzalny 2015;14:203-7.
- 45. De Castro JB, Lima VP, Dos Santos AO, Da GC, De Oliveira JG, Da Silva JN, *et al.* Correlation analysis between biochemical markers, pain perception, low back functional disability, and muscle strength in postmenopausal women with low back pain. J Phys Educ Sport 2020;20:24-30.
- 46. Iwata S, Hashizume H, Yoshimura N, Oka H, Iwahashi H, Ishimoto Y, *et al.* Osteoporosis, spinal degenerative disorders, and their association with low back pain, activities of daily living, and physical performance in a general population. Sci Rep 2024;14:15860.
- 47. Clark EM, Gooberman-Hill R, Peters TJ. Using self-reports of pain and other variables to distinguish between older women with back pain due to vertebral fractures and those with back pain due to degenerative changes. Osteoporos Int 2016;27:1459-67.
- 48. Steffens D, Maher CG, Pereira LS, Stevens ML, Oliveira VC, Chapple M, *et al.* Prevention of low back pain: A systematic review and meta-analysis. JAMA Intern Med 2016;176:199-208.
- Diez GG, Anitua E, Castellanos N, Vázquez C, Galindo-Villardón P, Alkhraisat MH. The effect of mindfulness on the inflammatory, psychological and biomechanical domains of adult patients with low back pain: A randomized controlled clinical trial. PLoS One 2022;17:e0276734.
- Molina-Garcia P, Plaza-Florido A, Mora-Gonzalez J, Torres-Lopez LV, Vanrenterghem J, Ortega FB. Role of physical fitness and functional movement in the body posture of children with overweight/obesity. Gait Posture 2020;80:331-8.
- 51. Farrokhi S, Mazzone B, Schneider M, Gombatto S, Mayer J, Highsmith MJ, *et al.* Biopsychosocial risk factors associated with chronic low back pain after lower limb amputation. Med Hypotheses 2017;108:1-9.

- 52. Salvi R. Global surge in adolescent obesity: A growing crisis. Int J Nurs Med Invest 2024;3:30-2.
- 53. Rodriguez-Martinez NG, Perez-Orribo L, Kalb S, Reyes PM, Newcomb AG, Hughes J, et al. The role of obesity in the biomechanics and radiological changes of the spine: An in vitro study. J Neurosurg Spine 2016;24:615-23.
- 54. Gentile E, Bobeuf F, Bendas A, Lopez AL, Pageaux B, Bherer L, et al. The effects of a physical training intervention on pain, disability and psychological factors in patients with chronic low back pain. Can J Pain 2021;5:A48-137.
- 55. Ahmed I. Influence of anxiety, depression and stress on physiotherapy treatment outcome for the patients with low back pain attended at the Centre for the Rehabilitation of the Paralyzed (CRP), Savar [dissertation]. Dhaka: Bangladesh Health Professions Institute, Faculty of Medicine, University of Dhaka; 2023. p. 11-7.
- 56. Petersen T, Laslett M, Juhl C. Clinical classification in low back pain: Best-evidence diagnostic rules based on systematic reviews. BMC Musculoskelet Disord 2017;18:188.
- 57. Jarvik JG, Gold LS, Comstock BA, Heagerty PJ, Rundell SD, Turner JA, et al. Association of early imaging for back pain with clinical outcomes in older adults. JAMA 2015;313:1143-53.
- 58. Jenkins HJ, Downie AS, Maher CG, Moloney NA, Magnussen JS, Hancock MJ. Imaging for low back pain: is clinical use consistent with guidelines? A systematic review and meta-analysis. Spine J 2018;18:2266-77.
- 59. Ruano-Ravina A, Provencio M, de Juan VC, Carcereny E, Estival A, Rodríguez-Abreu D, et al. Are there differences by sex in lung cancer characteristics at diagnosis? A nationwide study. Transl Lung Cancer Res 2021;10:3902.
- 60. Benitez Fuentes JD, Morgan E, de Luna Aguilar A, Mafra A, Shah R, Giusti F, et al. Global stage distribution of breast cancer at diagnosis: A systematic review and meta-analysis. JAMA Oncol 2024;10:71-8.
- 61. O'Connell NE, Cook CE, Wand BM, Ward SP. Clinical guidelines for low back pain: A critical review of consensus and inconsistencies across three major guidelines. Best Pract Res Clin Rheumatol 2016;30:968-80.
- 62. Custers P, Van de Kelft E, Eeckhaut B, Sabbe W, Hofman A, Debuysscher A, et al. Clinical examination, diagnosis, and conservative treatment of chronic low back pain: A Narrative review. Life (Basel) 2024;14:1090.
- Mohiuddin AK. Non-drug pain management: Opportunities to explore. [eBook on the Internet]. Biomed Grid; 2019. Available from: https://biomedgrid.com/ebooks/non-drugpain-management-opportunities-to-explore.pdf [Last accessed on 2025 Jan 08].
- 64. Cashin AG, Wand BM, O'Connell NE, Lee H, Rizzo RR, Bagg MK, et al. Pharmacological treatments for low back pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst Rev 2023;4:CD013815.
- 65. Vellucci R, Terenzi R, Kanis JA, Kress HG, Mediati RD, Reginster JY, et al. Understanding osteoporotic pain and its pharmacological treatment. Osteoporos Int 2018;29:1477-91.
- 66. Itani R, Soubra L, Karout S, Rahme D, Karout L, Khojah HM.

- Primary dysmenorrhea: Pathophysiology, diagnosis, and treatment updates. Korean J Fam Med 2022;43:101-8.
- 67. Corp N, Mansell G, Stynes S, Wynne-Jones G, Morsø L, Hill JC, et al. Evidence-based treatment recommendations for neck and low back pain across Europe: A systematic review of guidelines. Eur J Pain 2021;25:275-95.
- 68. Detollenaere RJ, den Boon J, Stekelenburg J, IntHout J, Vierhout ME, Kluivers KB, et al. Sacrospinous hysteropexy versus vaginal hysterectomy with suspension of the uterosacral ligaments in women with uterine prolapse stage 2 or higher: Multicentre randomised non-inferiority trial. BMJ 2015;351:h3717.
- 69. Trompeter K, Fett D, Platen P. Prevalence of back pain in sports: A systematic review of the literature. Sports Med 2017;47:1183-207.
- Synnott A, O'Keeffe M, Bunzli S, Dankaerts W, O'Sullivan P, O'Sullivan K. Physiotherapists may stigmatise or feel unprepared to treat people with low back pain and psychosocial factors that influence recovery: A systematic review. J Physiother 2015;61:68-76.
- 71. Tseng PC, Puthussery S, Pappas Y, Gau ML. A systematic review of randomised controlled trials on the effectiveness of exercise programs on Lumbo Pelvic Pain among postnatal women. BMC Pregnancy Childbirth 2015;15:316.
- 72. Bendíková E. Diversification of the physical and sport education syllabi and its effects on the musculoskeletal system in young female students. Trends Sport Sci 2020;27:149-55.
- 73. Badillo SA. Evidence-based women's health physical therapy across the lifespan. Curr Phys Med Rehabil Rep 2020;8:260-7.
- 74. Inoue G, Miyagi M, Uchida K, Ishikawa T, Kamoda H, Eguchi Y, et al. The prevalence and characteristics of low back pain among sitting workers in a Japanese manufacturing company. J Orthop Sci 2015;20:23-30.
- 75. Schaafsma FG, Anema JR, van der Beek AJ. Back pain: Prevention and management in the workplace. Best Pract Res Clin Rheumatol 2015;29:483-94.
- 76. Wong AY, Karppinen J, Samartzis D. Low back pain in older adults: Risk factors, management options and future directions. Scoliosis Spinal Disord 2017;12:14.
- 77. Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021;13:1332.
- Bise CG, Cupler Z, Mathers S, Turner R, Sundaram M, Catelani MB, et al. Face-to-face telehealth interventions in the treatment of low back pain: A systematic review. Complement Ther Clin Pract 2023;50:101671.
- 79. Markey KA, Mollan SP, Jensen RH, Sinclair AJ. Understanding idiopathic intracranial hypertension: Mechanisms, management, and future directions. Lancet Neurol 2016;15:78-91.

How to cite this article: Salvi RM, Kale S. Lower back pain in women across life stages: Insights from adolescence to menopause. Adesh Univ J Med Sci Res. doi: 10.25259/AUJMSR_7_2025