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INTRODUCTION

The 2022 update of the Global Strategy for Asthma Management and Prevention (GINA) has 
defined asthma as “a heterogeneous disease characterized by airway inflammation typified by 
clinical manifestations such as cough, wheezing, chest tightness, and shortness of breath that vary 
over time and in intensity, together with variable expiratory airflow limitations.”[1] Around 300 
million individuals are currently affected, this may increase to 400 million by 2025.[2] COVID-19 
is an infectious disease caused by the severe acute respiratory distress syndrome coronavirus 2 
(SARS-CoV-2), the disease is characterized by myriad of respiratory symptoms and multiorgan 
dysfunction.[3,4] The disease started in 2019 and reached pandemic level the same year, infecting 
millions of people and claiming millions of lives.[4] Both asthma and COVID-19 are diseases 
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of the lower respiratory tract. Comorbidities have been 
observed to potentiate the pathogenesis of COVID-19, giving 
rise to a more severe disease.[5] The relationship between 
viral infections and asthma is well-established, with more 
than 80% of acute asthma exacerbations triggered by viral 
infections of the respiratory tract.[6] Furthermore, asthma is 
regarded as a risk factor for the development of viral lower 
respiratory tract infections.[7] Of the respiratory comorbidities 
associated with COVID-19, it is observed that patients with 
chronic obstructive pulmonary disease are at a higher risk 
of having severe COVID-19.[8] As such, in the early phase of 
the pandemic, a similar relationship was predicted between 
asthma and COVID-19.[9] However, epidemiological data 
are not in keeping with this postulate, as no high burden 
of severe COVID-19 is observed for now among patients 
having asthma as comorbidity.[10] This observation has been 
surprising to allergists, immunologists, and pulmonologists. 
A  reduced expression of the receptor for SARS-CoV-2 on 
the respiratory epithelium of patients with asthma, antiviral 
effects of corticosteroids used in asthma management, 
and other biological response modifiers (BRMs) among 
others are proposed to be mechanisms behind the normal 
burden of COVID-19 among patients with asthma. This 
review endeavors to give a concise account of the proposed 
mechanisms behind the reduced incidence of severe 
COVID-19 among patients with asthma as comorbidity.

VIRAL INFECTIONS AND PATHOGENESIS OF 
ASTHMA

Acute attacks of asthma are triggered by a myriad of factors; 
the relevance of the triggers varies with the biological 
endotype of asthma. Of note, among such factors are 
airway infections due to rhinoviruses, metapneumoviruses, 
parainfluenza viruses, respiratory syncytial viruses, and 
coronaviruses.[11] Clinical infection in early childhood with 
these viruses is associated with wheezing episodes and a 
proportion of these children develop asthma later in life.[12,13] 
Human rhinoviruses (HRVs) are the most important viral 
triggers of asthma compared to other viruses.[11] In patients 
with established asthma, viral respiratory tract infections are 
responsible for the vast majority of exacerbation cases.[11,14]

It is believed that viral infections tend to alter the hosts 
immune response; however, this alteration usually occurs 
in the settings of genetic susceptibility as made evident 
by the ubiquitous nature of rhinoviral infections in the 
general population.[15] Several studies have demonstrated 
reduced type one interferon production in patients with 
asthma compared to normal healthy controls [Table  1], 
and this is found to correlate well with increased viral 
replication and slow clearance of infection particularly 
due to HRV.[16,17] Altered T-cell responses characterized by 
suppression of adaptive cellular immunity to viruses and 

enhanced IgE antibody production can be seen.[16,18] Further 
investigations have demonstrated associations between 
genetic polymorphisms in the innate and adaptive immune 
pathways important in the fight against viral infections 
and the development and exacerbations of asthma. These 
polymorphisms have been replicated by several independent 
studies [Table 1].

EPIDEMIOLOGY OF COVID-19 INFECTION 
AMONG PATIENTS WITH ASTHMA

The linkage between COVID-19 and asthma is still a subject 
of argument among experts. Across the globe, especially 
Europe, North America, and Asia, researches investigating 
asthma as a comorbidity in COVID-19 are still emerging. In 
most of these studies, the study designs were observational 
including prospective case series, cross-sectional design, 
case–control, and cohort design. Some of the studies reviewed 
investigated the overall burden of COVID-19 among patients 
having asthma, incidence of COVID-19 disease severity, 
effects of corticosteroids, and biologic response modifiers 
therapy on severity of COVID-19 in patients having asthma 
and mortality due to COVID-19 [Table  2]. Most of the 
studies reported minimal or no association between asthma 
and severe COVID-19 disease. [Table  2] summarizes the 
findings from some salient epidemiological studies on the 
association between COVID-19 and asthma.

PROPOSED PATHOBIOLOGICAL MECHANISMS 
BEHIND LOW INCIDENCE OF COVID-19 
AMONG PATIENTS WITH ASTHMA

Reduced angiotensin-converting enzyme 2 (ACE) 
expression in asthmatic airways

ACE2, a close homologue of ACE, is a transmembrane 
protein found on the surface of lung epithelial cells. 
It is also expressed on the cell surface by the kidney, 
heart, brain, and the intestines, respectively.[19,20] The 
predominant expression of the enzyme in the airways is on 
the sinonasal epithelium and the type 2 pneumocyte of the 
lungs[21,22] with the enzyme being much concentrated on 
the apical aspect of the type  2 pneumocyte.[22] Primarily, 
the enzyme functions to generate the angiotensin 1–7 
from angiotensin II.[23] Angiotensin II is obtained from 
angiotensin I by the activity of ACE2.[23] Angiotensin 1–7 
lowers blood pressure and prevents the profibrotic and 
hypertrophic effects of angiotensin II.[24]

Binding of the SARS-CoV-2 through the spike protein 
to the extra membranous domain of the ACE2 leads 
to the internalization of the virus particle through 
endocytosis.[25,26] The enzyme serves as receptor to both 
SARS-CoV-1 and SARS-CoV-2 and is indispensable for 
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infection of pneumocytes.[4] Variability in the expression 
of the ACE2 receptor on respiratory epithelium across 
individuals and disease states has been reported.[5,20] Asthma 
modifies the expression of the ACE2 receptor on the 
respiratory epithelium.[14]

ACE2 is regulated in two ways in asthma, and the direction 
of the regulation depends largely on the asthma endotype. 
The endotypes include T helper cell type  2 (Th2)-mediated 
atopic eosinophilic asthma, T helper cell type  17 (Th17)-
mediated neutrophilic asthma, paucigranulocytic asthma, and 
idiopathic eosinophilic asthma [27] [Figure 1]. The endotypes 
represent the pathobiological mechanisms of asthma disease 
and account for its heterogeneity.[2] In Th2 high/eosinophilic 
asthma, the cytokines interleukin (IL)-4 and IL-13 secreted by 
the innate lymphoid cell type 2 and the Th2 cell downregulate 

ACE2 expression. Thus, the reduced expression may deprive 
SARS-CoV-2 of its needed receptor for infectivity.[28,29] We 
suggest that IL-13 alters ACE2 expression by increasing the 
activity of ADAM-17 at the apical portion of the airway 
epithelial cells where the ACE2 is maximally expressed 
[Figure 2].[30,31] ADAM-17 enhances the shedding of ACE2 
from the surface of pneumocytes.[32] IL-13 may also act by 
activating protein kinase C or extracellular signal regulated 
kinase; these two enzymes are known to activate ADAM-
17 which cleaves ACE2 from cell surface.[29] In contrast, 
in Th17 high/neutrophilic asthma, the cytokine IL-17 can 
upregulate the expression of ACE2.[8] Coincidentally, the 
predominant asthma endotype is the Th2 atopic eosinophilic 
asthma[28] and this may explain why the reduced incidence 
of COVID-19 among patients with asthma. Furthermore, 

Table 1: Canonical polymorphisms and expression studies in unraveling the mechanisms of susceptibility to respiratory viral infections in 
patients with asthma.

Author (s) Research 
questions

Result Role in the immune response Effects in 
pathogenesis of 
asthma

Loisel 
et al., 2016[82]

Li et al., 2007[83]

STAT4 gene 
polymorphisms 
and asthma in 
humans

 STAT4 rs4853546 SNP is 
associated with virus‑induced 
asthma exacerbations
STAT‑4 T90089C is 
associated with increased 
susceptibility to asthma

A signaling molecule important 
in interleukin‑12 production. 
Important cytokine in Th1 
polarization

Poor CD8+T‑cell 
response to respiratory 
viruses

Loisel  
et al., 2016[82]

Tabèze  
et al., 2019[84]

JAK2 gene 
polymorphisms 
and asthma in 
humans

JAK2 rs3780375 
HRV‑associated wheezing 
and asthma. JAK2 V617F 
associated with severe asthma

Signaling molecule important in 
GM‑CSF production; a cytokine 
important in myelopoiesis[85]

Poor production of 
macrophages which 
play a role in antigen 
presentation and 
interferons production

Loisel  
et al., 2016[82]

Ching  
et al., 2010[86]

Hamano  
et al., 2005[87]

M×1 gene 
polymorphisms 
and asthma in 
humans

Rs469390 HRV‑associated 
wheezing and asthma.
GG genotype is more 
frequent in hypoxemic 
patients with SARS‑CoV 
infection

M×1 is an interferon‑inducible 
gene that interferes with 
viral nucleoprotein complex 
formation[88]

Impaired type one 
interferon‑mediated 
antiviral state in host’s 
cells

Loisel  
et al., 2016[82]

Einisman  
et al., 2015[89]

Iordanidou  
et al., 2014[90]

VDR gene 
polymorphisms 
in humans

VDR rs4328262 SNP is 
associated with high asthma 
burden and viral loss of 
control
Apal variant is associated 
with less severe disease 
compared to Bsml and Fokl

Plays role in T‑cell development, 
differentiation, and function.[91]

Poor adaptive cellular 
immune response to 
viruses

Loisel et al., 
2016[82]

DDX58 gene 
polymorphisms 
and asthma in 
humans

DDX58 rs10813831SNP 
is associated with viral 
loss of asthma control and 
childhood asthma.

A RIG1 pattern recognition 
receptor that senses cytoplasmic 
viral RNA and induces type one 
interferon production[92]

Impaired antiviral 
interferons production

Loisel et al., 
2016[82]

EIF2AK2 gene 
polymorphisms 
and asthma in 
humans

EIF2A rs4293920 is 
associated with prolonged 
HRV infection

It inhibits ternary 
tRNAMet‑GTP‑eIF2 complex 
formation there by stalling viral 
and hosts protein synthesis[93]

Enhanced replication 
of viruses in the 
airways

HRV: Human rhinoviruses, GM‑CSF: Granulocyte monocyte colony‑stimulating factor
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(Contd...)

Table 2: Studies on the association between COVID‑19 and asthma (with and without corticosteroids).

Authors Study design Relevant aims Sample size Region of 
the world

Outcome

Song et al., 
2020[8]

Retrospective 
analytical study 
on two groups of 
COVID‑19 patients, 
one with asthma as 
comorbidity and the 
other with COPD

Assess the role 
of asthma in 
development 
of severe 
COVID‑19 

Twenty‑one COPD 
and 22 asthma 
with a diagnosis of 
COVID‑19

Wuhan, 
China

Asthma patients have 
reduced risk of developing 
severe COVID‑19 than 
patients with COPD (OR: 
23.433; 95% CI 1.525–
360.135; P<0.01)1

Richardson  
et al., 
2020[94]

Prospective case 
series of patients with 
COVID‑19 admitted 
to 12 hospitals

Identification of 
comorbidities to 
COVID‑19

5700 patients with a 
confirmed diagnosis 
of COVID‑19

New York, 
USA

Only 479 (9%) patients 
have asthma, compared to 
hypertension (3026), obesity 
(1737), and diabetes (1808)

Li et al., 
2020[95]

Ambispective cohort 
study of severe versus 
non‑severe COVID‑19

Identification of 
comorbidities to 
COVID‑19

548 patients with a 
confirmed diagnosis 
of COVID‑19 of 
which 269 have 
severe disease

Wuhan, 
China

The prevalence of asthma, 
hypertension, diabetes, and 
coronary heart disease in 
the total (548) population is 
0.9%, 30.3%, 15.1%, and 10%, 
respectively. It is 1.5%, 38.7%, 
19.3%, and 10.4% among 
those with severe COVID‑19

Lee et al., 
2020[96]

Retrospective cohort 
study

Association 
between asthma 
and respiratory 
failure and 
death due to 
COVID‑19

686 asthma patients 
with COVID‑19 
compared with 6586 
COVID‑19 patients 
without asthma 

South Korea Asthma is not a significant 
risk factor for respiratory 
failure or mortality due to 
COVID‑19; OR: 0.99,  
P: 0.997 and OR: 1.06,  
P: 0.759

Wang et al., 
2020[9]

Meta‑analysis of 
original data on 
severe COVID‑19 and 
asthma 

Association 
of asthma and 
mortality due to 
COVID‑19

744 asthmatic 
patients and 8151 
non‑asthmatic 
patients were 
compared2

Asthma had no significant 
effect on mortality (OR=0.96; 
95% CI 0.70–1.30; I2=0%; 
P=0.79)2

Bloom  
et al., 
2021[44]

Multicenter 
prospective cohort 
study comparing 
four cohorts of 
COVID‑19 patients 
with the following 
comorbidities: 
Asthma, COPD, 
asthma+COPD, and 
COVID‑19 patients 
without asthma or 
COPD3 

Characterization 
of respiratory 
comorbidities 
among patients 
with COVID‑19, 
risk of mortality 
from COVID‑19 
due to 
comorbidity, and 
the effect of ICS 
on COVID‑19 
severity

75,463 patients with 
COVID‑19

UK 
(Scotland 
and 
England)

The prevalence of asthma, 
COPD, and asthma+COPD 
is 10.41%, 13.6%, and 2.75%, 
respectively. Patients with 
asthma in the age range 
of 16–39 years (1867 with 
asthma vs. 7083 without 
asthma) and≥50 years (5918 
with asthma vs. 59,735 
without) have higher odds for 
critical care need OR: 1.20, 
95% CI (1.05–1.37) and 1.17, 
95% CI (1.08–1.27)

Schultze  
et al., 
2020[53]

Prospective cohort 
study

Occurrence 
of severe 
COVID‑19 and 
mortality among 
asthma patients 
managed 
with Inhaled 
corticosteroids 
versus beta 
agonists

Two cohorts of 
148,557 with COPD 
and 818,490 with 
asthma

UK Asthma patients prescribed 
high‑dose ICS were 
at increased risk of 
COVID‑19‑related death 
compared to those on 
beta‑agonists, hazard ratio 
and 95% CI: (1·55 [1·10–2·18])
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the Th2 high/eosinophilic asthma endotype is associated 
with eosinophilia; and elevated peripheral blood eosinophil 
count is regarded as good prognostic marker of COVID-19.
[33,34] Furthermore, the expression of reduced affinity ACE2 
has been reported to occur due to rhinoviruses infection.[35] 
As highlighted previously, rhinoviruses are linked to asthma 
exacerbations. Rhinoviruses induce the expression of a short 
isoform of ACE2 which has reduced affinity to SARS-CoV-2 
spike protein thus inhibiting the entry of SARS-CoV-2 into 
pneumocyte.[35]

Anti-inflammatory and antiviral effects of corticosteroids

Corticosteroids are used in the management of bronchial 
asthma.[1] The drugs counteract the allergic inflammation 
seen in asthma by reducing vascular permeability and 
hence laryngeal edema[36] minimizing the selective 
trafficking of leukocytes from the peripheral blood to the 
lungs by downregulating the expression of the cellular 
adhesion molecules selectin and integrins and interfering 

with the maturation and survival of polymorphonuclear 
leukocytes.[37-39] The relevance of corticosteroids in viral 
infections is incompletely understood and the available 
information has been contradictory. Early intravenous 
corticosteroids use was reported to have association with 
higher viral load and slower clearance of SARS-CoV 
infection among humans.[40-42] Inhaled corticosteroids use 
in asthma is associated with higher incidence of respiratory 
tract infections.[14]

The use of corticosteroids in the management of COVID-19 
has had mixed reactions [Table  2].[43-48] In addition to the 
pharmacology of the various corticosteroids, differences 
in study design, variability in disease severity, choice, and 
interpretation of statistical methods among others could 
have contributed to the variations [Table  2]. Systemic 
corticosteroids are found to be effective in reversing 
hyperinflammatory acute respiratory syndrome seen in 
severe COVID-19.[49] In the UK RECOVERY trial, it was 
found that systemic corticosteroids (6  mg dexamethasone 

Table 2: (Continued).

Authors Study design Relevant aims Sample size Region of 
the world

Outcome

Izquierdo 
et al., 
2021[46]

Multicenter 
retrospective 
cross‑sectional study

Assess the 
impact of asthma 
on COVID‑19

71,182 participants 
with asthma

Spain Only 1006 asthma patients 
(1.4%) have COVID‑19, 26.1% 
required hospitalization, 
asthma patients with 
COVID‑19 are older 55±20 
(P=0.001), have more 
comorbidities burden than in 
those without COVID‑19. OR 
(95% CI) 2.02 (1.78–2.30, 1.72 
(1.49–1.98 and 1.72  
(1.45–2.03) for HTN, 
dyslipidemia, DM, and obesity, 
respectively

Adir et al., 
2021[47]

Case–control and 
cohort design

Assess 
association 
between 
corticosteroid 
and biologics 
use in asthma 
COVID‑19

All participants 
(80,602) were 
patients with asthma. 
8242 with COVID‑19 
and 72,360 without 
COVID‑19

Israel 10.2% have COVID‑19. 
Biologics and corticosteroids 
are not associated with 
overall occurrence of 
COVID‑19 (adjusted OR, 
0.99; 95% CI, 0.73–1.33; for 
SCS use: adjusted odds ratio, 
0.96; 95% CI, 0.90–1.03). 
However , chronic systemic 
corticosteroid use (≥6 
prescriptions in the previous 
year) is an independent risk 
factor for severe COVID‑19 
(adjusted HR and 95%  
CI: 2.19 and 1.63–2.94) 

1The sample size was small and, hence, the very wide confidence interval for the odds ratio. 2None of the said studies is here. 3The design has more elements 
of comparative cross‑sectional than cohort study design. HTN: Hypertension, DM: Diabetes mellitus, COPD: Chronic pulmonary obstructive disease,  
CI: Confidence interval, OR: Odds ratio, HR: Hazard ratio
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for 10 days) in COVID-19 patients hospitalized with severe 
disease and needing oxygen or respiratory/ventilatory 
support had reduced mortality compared to those that did 
not get dexamethasone.[50] Moreover, in vitro experiments 
have demonstrated that corticosteroids such as ciclesonide, 
algestone acetophenide, budesonide, and mometasone 
can inhibit the replication of the Middle East respiratory 
syndrome coronavirus (MERS-CoV) and SARS-CoV-2, 
respectively.[51,52] Ciclesonide was found to act by inhibiting 
the non-structural protein 15 of SARS-CoV-2.[51] Conversely, 
however, systemic corticosteroids such as prednisone and 

prednisolone, used in the management of acute exacerbations 
of asthma, were found to have no effect on SARS-CoV-2 
replication.[51] Many studies have identified varying effects 
on the use of corticosteroids in the management of asthma 
patients with COVID-19.[9,44,47,48,53] It is hypothesized that 
the anti-inflammatory and antiviral effects of inhaled 
corticosteroids are behind the reduced severity of COVID-19 
among patients with asthma.[10] It was, however, observed 
that the worsening of COVID-19 following corticosteroids 
administration usually occurs among patients with severe 
asthma.[53]

The most notable manifestation of COVID-19 is acute 
respiratory distress syndrome (ARDS). ARDS occurs as an 
indicator of severe acute lung injury (ALI). ALI is mediated 
by local innate inflammatory mechanisms in the airways. 
Activation of resident pulmonary macrophages following 
pneumocyte injury by SARS-CoV-2 infection leads to release 
of innate inflammatory cytokines such as tumor necrosis 
factor-alpha (TNFα), interleukin 1, 6, and macrophage 
inflammatory protein-α.[54] TNFα induces microvascular 
endothelial activation characterized by increased expression 
of chemotactic molecules and procoagulant proteins. This 
leads to exodus of leukocytes into the alveolar spaces and 
thrombosis.[4] Interstitial mononuclear cell infiltration is also 
seen that the monomorphs may associate in consonance with 
polymorphs to orchestrate an immune complex mediated 
injury to the lung tissue characterized by complement system 
activation and hemostatic aberrations.[4,55] The polymorphs 
degranulate to release proteolytic enzymes, reactive 
oxygen and nitrogen species, and cytokines. The activity 
of polymorphs causes further damage to the pneumocytes 

Figure 1: Proposed pathobiologic mechanisms of interaction between asthma and COVID-19.

Figure 2: Proposed effects of interleukin-13 (IL-13) on angiotensin-
converting enzyme 2 (ACE-2) expression on asthmatic airways. 
PKC: Protein kinase C, Erf: Extracellular signal regulated kinase, 
ADAM-17: A disintegrin metalloprotease member 17.
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and the endothelium. The microvasculature becomes leaky, 
leading to intra-alveolar fluid accumulation.[56] Damage 
to type  2 pneumocytes impedes surfactants production 
thus further compromising gaseous exchange and hence 
the fall in the percentage saturation of oxygen and the 
hypoxemia.[56] It is assumed that inhaled corticosteroids 
significantly counteract this vicious cycle in asthmatics by 
transrepression of inflammatory genes and transactivation 
of anti-inflammatory genes in the airways of asthmatics. 
As stated above, corticosteroids downregulate the 
migration of inflammatory cells and the release of 
inflammatory cytokines. Corticosteroids are lipophilic 
as such; they are quickly transported across the lipid 
bilayer of biological membranes.[57] On entry into the cell, 
corticosteroids (glucocorticoids [GCs]) are quickly bound 
to by a glucocorticoid receptor (GR) which is chaperoned 
to heat shock protein 90, 70, and other proteins. The formed 
complex dissociates from the chaperone proteins and is 
translocated into the nucleus assisted by import proteins α 
and 13.[58] The complex as a homodimer binds to promoter 
sequences (glucocorticoid response elements [GREs]) of 
responsive genes through the DNA-binding domain of the 
GR. Subsequently, recruitment of additional transcriptional 
cofactors leads to chromatin remodeling, RNA polymerase II 
binding, and gene expression.[59] In other situations, the GRE 
may induce repression of the glucocorticoid responsive genes. 
This is usually done by monomeric GC/GR, and it happens 
when the activity of other transcription factors such as nuclear 
factor-kappa beta and activation protein one is impeded 
by the GC/GR transcription factor through competition 
for binding space in the form of composite binding or 
tethering.[60,61] Through the mechanisms mentioned above, 
corticosteroids downregulate the expression of the following 
mediators: Interleukin 1β, 6, 8, 11, TNFα, granulocyte 
monocyte colony-stimulating factor, monocyte chemotactic 
protein-1, eotaxins, migration inhibitory protein-1, and 
regulated on activation expressed and secreted.[58] In these 
ways, inhaled corticosteroids counteract neutrophil and 
monocyte recruitment into airways, stabilize mast cells, 
and prevent the secretion of histamine and late phase lipid 
mediators by inhibiting phospholipase A2 through lipocortin 
induction.[62] It also inhibits fibroblast proliferation and 
collagen deposition.[62] Most of these processes and mediators 
are central to the pathogenesis of COVID-19 as stated 
above.[54]

As previously mentioned, the inhaled corticosteroids 
ciclesonide inhibits SARS-CoV-2 replication by blocking 
non-structural protein 15. The non-structural protein 
15 is one of the 16 proteins which form the replicase 
machinery of SARS-CoV-2. These proteins are part of a 
larger protein, polyprotein 1ab which is encoded by ORF1ab 
of SARS-CoV-2. Non-structural protein 15 is a viral RNA 
modification enzyme with uridylate-specific endoribonuclease 

activity.[63] However, the antiviral target of mometasone is 
yet to be identified.[51] Mometasone was found to inhibit the 
replication of coronaviruses that have developed resistant 
mutation to ciclesonide; thus suggesting that mometasone has 
a different target from ciclesonide.[51] Furthermore, the targets 
of the other inhaled corticosteroids with antiviral activity are 
also not known.[51] Mometasone and possibly other inhaled 
corticosteroids with antiviral activity may work by targeting 
cellular heat shock proteins 70 and 90. Heat shock proteins 
are indispensable in maintenance of protein stability and 
cellular homeostasis. They are extensively used as chaperones 
to both host cell proteins and viral proteins. They protect the 
proteins against unfavorable conditions caused by stressors 
and are found in all cellular compartments, including the 
endoplasmic reticulum which serves as niche for SARS-CoV-2 
replication.[63,64] Coronaviruses are found to utilize heat shock 
protein 90 for stabilization of nucleoprotein and protection 
against cellular proteasomes of the host.[65] Inhibition of HSP 
90 drastically reduces MERS-CoV and SARS-CoV-2 in cell 
cultures.[65] Similarly, GC receptor utilizes heat shock proteins 
70 and 90 as stabilizers in the cytosol. Thus, competition for 
the available heat shock proteins between viral and normal 
proteins including the GR is inevitable. It is found that cortisol 
induces the downregulation of heat shock protein 70 in fish.[66] 
Whether corticosteroids can alter the expression of heat shock 
proteins in humans is however not adequately studied. It 
was observed that stable binding of HSP 90 to geldanamycin 
disrupts glucocorticoid receptor’s stability and hence its 
ability to bind GC,[67] thus suggesting that a better competitor 
can make HSP 90 unavailable for even the physiological 
routines of the cell. Therefore, through such competition, 
GR may inhibit SARS-CoV-2 replication. The observation 
that ICS do not induce HSP 90 expression in the respiratory 
epithelium[68] and that serum level of HSP 90 is not altered by 
prednisolone administration[69] may further support this view. 
However, there are contrary observations on the effects of GC 
on HSPs expression. Dexamethasone was reported to induce 
the expression of heat shock protein 72 in human cardiac 
myocytes in vitro.[70]

The effects of BRMs

BRMs are used in the management of asthma that 
is uncontrolled at medium to high doses of inhaled 
corticosteroids and long-acting beta-agonist.[71] The 
commonly used BRMs are cytokine and cytokine receptor 
antagonists.[72,73] Only a small fraction of patients with 
asthma is treated using these drugs, though the guidelines on 
their use are increasingly being modified. The success of the 
therapy depends on the correct match between the biologic 
response modifier and the asthma endotype.[74-77] The drugs 
are currently used for the management of severe atopic 
and eosinophilic endotypes of asthma. It is proposed that 
these drugs modify the manifestation of COVID-19 among 
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asthma patient [Table  3]. The most commonly used BRMs 
in the management of asthma are as follows: Omalizumab, 
mepolizumab, reslizumab, benralizumab, and dupilumab.

Omalizumab was approved in 2003 for the management 
of severe to moderate asthma as an add on therapy,[74] 
urticarial, and other mast cell disorders. Several case 
reports on the possible role of omalizumab in reducing 
the severity of COVID-19 have been reported. Eksu et al., 
2021,[78] and Abduelmula et al., 2021,[79] reported no hike in 
COVID-19  cases among patients with asthma and patients 
with chronic urticaria on omalizumab. Mepolizumab 
and reslizumab are anti-IL-5 drugs, they are used in the 
management of severe eosinophilic asthma.[72] They bind 
to free IL-5 thus making it unavailable for binding to 
eosinophils through IL-5R [Table  3]. Benralizumab is an 
anti-IL-5Rα antagonist which prevents downstream signal 
transduction by the IL-5R receptor.[72] IL-5 stimulates 
eosinopoiesis and promotes survival and recruitment 
of eosinophils to airways.[73] Benralizumab was used in 
two patients, one elderly (66  years) who did not develop 
severe COVID-19.[80] Eger et al., 2020,[81] reported more 
cases of severe COVID-19 among asthma patients treated 
mepolizumab, reslizumab, and benralizumab compared to 
the general Dutch population. Of these, nine patients were 
infected and six of them were hospitalized due to COVID-
19-associated respiratory symptoms. However, most of 
these patients have other comorbidities such as obesity and 
diabetes.

CONCLUSION

From the available studies, asthma is generally not much a 
comorbidity of COVID-19 despite the presence of a favorable 
environment of inflamed and hyper-responsive airways. 
Reduced expression of the ACE2 receptor and/or expression 
of a low affinity isotype, the possible effects of inhaled 
corticosteroids and BRMs are proposed to form the bases for 
this incongruity. However, these may not be exhaustive, as 
more information on the intricate interaction between SARS-
CoV-2 infection of the airways and asthma disease becomes 

available, our understanding of this complex association will 
be better.
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